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Chaotic behaviors of the tent map (a piecewisc-linear, continuous map with a 
unique maximum) are studied analytically throu~aout its chaotic region in terms 
of the invariant density and the power spectrum. As the height of the maximum 
is lowered, successive band-splitting transitions occur in the chaotic region and 
accumulate to the transition point into the nonchaotic region. The time- 
correlation function of nonperiodic orbits and their power spectrum are calcu- 
lated exactly at the band-splitting points and in the vicinity of these points. The 
method of eigenvalue problems of the Frobenius-Perron operator is used. 2" - 1 
critical modes, where m = 1,2, 3 . . . . .  are found which exhibit the critical 
slowing-down near the 2 m Lband to 2m-band transition point. After the transi- 
tion these modes become periodic modes which represent the cycling of non- 
periodic orbits among 2 m bands together with the periodic modes generated by 
the preceding band splittings. Scaling laws near the transition point into the 
nonchaotic region are investigated and a new scaling law is found for the total 
intensity of the periodic part of the spectrum. 

KEY WORDS: Chaos; mapping; invariant measure; ergodicity; band 
structure of chaos; power spectrum of chaos; critical behavior; scaling 
law; Frobenius-Perron operator. 

1. INTRODUCTION 

In a previous paper, (1) we have studied the single-band regime and the 
band-splitting transition to the two-band regime in the chaotic region of a 
tent map. Especially, the critical behavior near this transition point has 
been investigated in detail. The present paper deals with the overall 
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structure of the chaotic region of the tent map. The successive band- 
splitting transitions in the chaotic region are clearly described in terms of 
the invariant density, and chaotic structures of the 2'~-band regimes (m = 0, 
1, 2 , . . .  ) are studied in terms of the power spectrum. Critical behaviors are 
investigated near the 2 m- 1-band to 2m-band transition point and near the 
transition point to the nonchaotic region. All of these are made analytically 
on the basis of rigorous calculations of appropriate quantities. 

A map which has a single quadratic maximum, for example, the 
logistic model, exhibits a transition to chaos via a cascade of period- 
doubling bifurcations. (2'3) By taking the logistic model, Feigenbaum has 
predicted certain universal properties for the onset of chaos/4'5) The 
period-doubling sequence as a precursor to chaos has now been found in 
many systems which are described by low-dimensional nonlinear ordinary 
differential equationsJ 6-11) Some of them have definite physical ground 
and the other are simple mathematical models. The onset properties are in 
good agreement with Feigenbaum's predictions. ~6'7'9'1~) 

The period-doubling route to chaos has also been observed in the 
transition to turbulent convection in Btnard cells with small aspect ra- 
tios. (12-14) The experimental evidence is in favor of Feigenbaum's predic- 
tions, though more detailed studies seem to be needed. 

All these studies and others indicate that certain essential aspects of 
chaotic behaviors can be understood in terms of simple one-dimensional 
maps. (15-1v) This is the reason why we take up simple one-dimensional 
maps in this paper. 

At present, however, relatively little is known about chaotic properties 
all over the chaotic region. Quadratic maps have chaotic bands which split 
successively as the control parameter is varied toward the chaotic transition 
point. O) The band-splitting transitions have also been found in low- 
dimensional dynamical systems. (1~ In the vicinity of the chaotic transi- 
tion point, some scaling laws have been found for the Lyapunov expo- 
nent ~19'2~ and the power spectrum. (21'22) The purpose of this paper is to 
study, all over the chaotic region, the properties of the chaos which has the 
band structure. We do this by taking the tent map as a typical and soluble 
model. The scaling laws are also discussed on the basis of a rigorous 
analysis for the tent map. 

The tent map is a mapfa on the unit interval J = [0, 1] into itself: 

ax,  x ~ [ 0 , 1 / 2 ]  
fa(X)= a ( 1 - x ) ,  x ~ ( 1 / 2 , 1 ]  (1.1) 

where a is a control parameter which is varied between 0 and 2. We 
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consider a discrete process generated by 

X n = f a ( X n _ l ) = f ( ' ) ( X o )  (n = 1,2,3 . . . .  ) (1.2) 

where f ( ' )  denotes the nth iterate of fa. The Lyapunov exponent is given by 

Xa(x) = lim l ln d ,) (1.3) ,~,~ n ~xx f ~ ( ( x )  = In a 

everywhere in J.  If 0 < a < 1, then for every point x ~ J the orbit f(~')(x) 
converges to the unique fixed point 0 as n increases. At a = 1, every point 
x ~ [0, 1/2] is a fixed point. The chaotic region is 1 < a < 2, in which 

xo>0. 
For a map to exhibit chaos, it is necessary that the map has the 

stretching and folding properties. (27) The simplest of such maps which have 
the band structure is the tent map. It should be noted, however, that the 
transition to chaos in this map occurs abruptly at a - -  1 since the period- 
doubling bifurcations degenerate into one point a -- 1. 

The power spectrum studied in this paper is the Fourier-Laplace 
transform of the time-correlation function of nonperiodic orbits. In calcu- 
lating the correlation function, we adopt the method of eigenvalue prob- 
lems of the Frobenius-Perron operator presented by Mori, So, and Ose, (:3) 
although we use the Frobenius-Perron operator itself instead of the modi- 
fied one proposed by them. The method is developed systematically in 
Appendix B. 

In Section 2, the band structure is discussed and the invariant density 
is given in the 2m-band regime (m = 0, l, 2 , . . .  ). The correlation function 
and the power spectrum at the band-splitting point 8 m are obtained in 
Section 3, and those for the two sequences of values of the parameter a 
which converge to 8 m from above and from below are presented in Section 
4. In Section 5, the critical behaviors near the band-splitting point 8,, are 
discussed. Those near 8 l have been studied in the previous paper. (1) The 
critical behaviors near the chaotic transition point a = 1 are investigated in 
Section 6. The last section is devoted to a summary and some remarks on 
the scaling laws in the vicinity of the chaotic transition point. 

2. BAND SPLITTINGS AND THE INVARIANT DENSITY 

In the chaotic region, the tent map fa has a unique ergodic invariant 
measure which is absolutely-continuous with respect to the Lebesgue mea- 
sure. (3'24) The density function of the invariant measure (the invariant 
density) has been obtained by Ito, Tanaka, and Nakada. (25) In this section, 
we discuss the band structure in the chaotic region, and give the formula 
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for the invariant density in the 2m-band regime in terms of the density in 
the single-band regime. 

By virtue of ergodicity, the invariant density Oa (x) for fa in the interval 
J is determined as a unique solution to the equation (3) 

~'O~(x) = O,(x) (2.1) 

where ~ is the Frobenius-Perron operator defined by 

~ F ( x )  - - ;dy  F(y) 8 (fa (Y) -- x) (2.2) 

Some properties o f / ~  are given in Appendix A. 
In the chaotic region 1 < a < 2, the map fa has a unique fixed point 

x*(a) other than 0: 

x*(a) = a / (a  + 1) (2.3) 

This fixed point is always unstable. We write 

Xn(a ) ~ f~(")(1/2) (2.4) 

Then xl(a ) = a/2 and x2(a )=  a ( 1 -  a/2). The intervals (O, xz(a)) and 
(xl(a), 1) are transient for f~, and thus O~(x) = 0 in these intervals. We have 
faA = A for A = [x2(a), xl(a)]. If ~/2 < a < 2, then A is an attractor and 
Oa(X) is positive for every x ~ A. (25) Here ~-  is the value of a satisfying 
x3(a ) = x*(a). At a = ~- ,  the attractor A splits into two bands at the 
position x -- x*(a). This is seen as follows. 

Let I 0 and 11 be the intervals I 0 = [x*(a), y0(a)] and I l = [yl(a),  x*(a)], 
where yo(a) and yl(a) are the values of x which satisfy fa(2)(X) = x*(a). See 
Fig. 1. Define the two transformations cps ~ : I s ~ J (i = 0, 1), where 

~)ia(X) = as(a)[  x - x*(a) ]  

ao(a ) = [yo(a)  - x * ( a ) ] - '  = a(a + 1) / ( a  - 1) (2.5) 

a,(a) = [ y , ( a ) -  x * ( a ) ] - ' =  - ( a  + 1 ) / ( a -  1) 

l < a  < ~ - ,  the two maps f(2) ii:Ii_._)i i and f ,2:J-+J are Then, for 
conjugate: 

f~2 = r ~ f~(2) o qvi~- 1 (i = 0, 1 ) (2.6) 

Therefore, in terms of pa~ for f~2 in J ,  the mvariant  density Oa(2)(X; IS) for 
f(~2) I I s in /s is given as follows: 

O(2)(x;//) = ]as(a)[OaZ(%~(x)) (2.7) 

Indeed, we see that (2.7) satisfies the equation 

~ dy 0(~ 2) (y; I i )8 (/(2)(y) _ x) = O~ (2) (x; I i ) (2.8) 
J1i 
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Fig. 1. Tent map fa(x) (thick line) and the iterated map f(2)(x) (thin line) in the 2-band 

regime. The intervals Ao and A 1 are the two bands. 

Using (2.2) and (2.8), we also have ~p~(2)(x; I0) = p~(2)(x; 11) and ~p~(2)(x; 
11) = O~2)(X;Io). Hence we obtain for 1 < a ~<~/2 

I~i(a)l 
Pa(X) = ~ 2 Pa2(~ia(X)) (2.9) 

i=0,1 

If 1 < a <~/2-, the intervals corresponding to 0 < ~ia(X) < x2(a2), namely, 
(x*(a),  x3(a)) and (x4(a), x*(a))  are transient for fa, and therefore Pa(X) = 0 
for x4(a ) < x < x3(a ). Let A i (i = 0, 1) be the intervals corresponding to 
x2(a  2) ~< ~ia(X)~ xl(a2). Then we have f ,  A o = A  l and foA 1 = A  o for 
1 < a < ~/2-. At  a = (2-, the attractor A for V~- < a < 2 splits into two bands 
Ao and A 1 . See Fig. 1. 

Similarly, at a 2 = ~- ,  each of the two bands splits into two bands. The 
intervals A~j ( i , j  = 0, 1) of the four bands are determined by x2(a 4) 
< ~ja~ o 9~i~(x) < xl(a  4) for 1 < a 2 < ~ .  
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In  this manner ,  as a is decreased, the b a n d  splitting occurs successively 
at a = a l , a  2 . . . . .  a m . . . . .  where a m = 2 l/M, M = 2 m, and m = 1,2,3 . . . . .  
We put a 0 = 2. For  a-m+ ~ < a < a,,, there exist 2 m disjoint intervals Ai, i2. .  "in 
(i~ = 0, 1) in which p a ( x )  is positive (the 2m-band regime). Here Ai,i2..  im is 
the interval corresponding to 

x 2 ( a m )  < f ~ l m ( X )  <~ X l ( a m )  (2.10) 

where 

D i m  ~ ~imam I 0 ~9i~ , . . . . .  0 �9 �9 �9 0 ~9i2a] 0 ~ i ,a  (2.11) 

a k -  a K ( K =  2 k, k--- 1,2,3 . . . . .  m) (2.12) 

I =  1 + i 1 + 2 i 2 +  �9 �9 �9 + 2 m - l i  m (2.13) 

We put  Jt --  A~,~..  i~ on account  of (2.13), and write the Lebesgue measure 
of Jl as/~(Jz). Then, f rom (2.10), (2.11), and (2.5), we have 

I~(Jz)  = a Z - ' l ~ ( J , )  (l  = 1,2,3 . . . . .  2 m) (2.14) 

/Z(Jl) = A ( a m ) / l a o ( a ) a o ( a O  " ' "  Oto(am-1)1 (2.15) 

where 

A(a) = x l ( a  ) - x 2 ( a  ) = ( a / 2 ) ( a  - 1) (2.16) 

Equat ion (2.14) implies that f~J l  = J l+ l  for 1 < l < 2 '~ -- 1. We can also 
show that f a J M  = J l ,  where M = 2 m. 

By the one-to-one t ransformation dgtm, we have 

f a  m = f~lm ~ f (2m) o (PT,. ~ (2.17) 

Thus, for a, ,+l < a < a m, repeated use of (2.9) yields 

2" 
1=1 2m/z(3[') P a m ( ~ P l m ( X ) )  (2.18) 

where ~ < a,, < 2. 

Similarity and the Rescaling Factor of Bandwidth 

Let r be a constant  such that  ~ < r < 2, and put  r m = r 1 / M  ( M  = 2 m, 

m = 0, 1,2 . . . .  ). W h e n  a = r m, then a 2 = rm_ j and a,~+l < a < a,,. F r o m  
(2.6), we have 

f,m( 2m ') o f(2m) o -1 (i = 0, 1) (2.19) 
- 1 ~ fPirm arm f~irm 

This equation implies that each band  for frm_, corresponds to two bands  for 
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frm' one belonging to I 0 and  the other  to 1 t , and  that  the process within any  
b a n d  for f~_,  genera ted by  Jr(f ", ') is similar to the process within each of 
the corresponding bands  for  frm generated by fr(~ m) . 

F r o m  (2.19) and  (2.5), the rescaling factors of bandwid th  are given by  
[ai(rm) [ (i = 0, 1). As m ~  oe, they become  infinity: 

[ a,(rm)[--> 2 m+ l / I n  r (2�9 

For  the infinite sequence r, q ,  r 2 . . . .  , the convergence rate 8 is 

6 = lim rm- l - rm - 2 ( 2 � 9  
m~oo r m -- rm+ 1 

This is independent  of r. If  r = 2, then r m is the band-spl i t t ing point  a m. 
According  to Fe igenbaum,  (4) 6 = 4 . 6 6 9 . . .  for  a quadrat ic  m a p  in its 
periodic region. 

Invariant Density p a ( X )  for Certain Sequences of a 

We give here explicit expressions of pa(x) for three types of sequences 
of values of a: the sequence of the band-spl i t t ing points  am and  the two 
sequences which converge to am f rom above  and  f rom below. 

(I) a = am = 21/M, where M = 2 m and m = O, 1,2, 3 . . . . .  If  a = ao 
= 2, it follows immedia te ly  f rom (2.1) that  & ( x )  = 1 for 0 < x < 1. (3) Since 
a m = 2 for any  m, we have  pam(~lm(X))  = Ol(X), where O t is the indicator  
funct ion of J l :  0 l ( x ) =  1 for  x E J/ ,  and  Ot(x ) = 0 otherwise. Hence  at 

a = a  m 

M 

oo(x) = Z l t=~ Mtz(Jt ) Ol(x) (2.22) 

(II)  a = bmK = b~:/M, where M = 2 m, m = 0, 1, 2, 3 . . . . .  and  K = 3, 5, 
7 . . . . .  Here  b K is the value of a at  which {xn(a)} is a periodic orbit  with 
per iod K in which x n ( a ) ~ ( 1 / 2 , x l ( a ) )  for 3 < n < K - 1 ,  and  XK(a ) 
= 1/2 ,  i.e., a rotat ing periodic orbit�9 Then  we have  

xn(a) = x*(a)[1 + ( -1)na~ 1)(a2/2- 1)] (n > 3) 

T h e r e f o r e ,  b K is de te rmined  as the max imal  root  of the equat ion s K -  
2s K - 2 -  1 = 0 ,  (25) and  we g e t b  3 = ( 1 + ~ - ) / 2 > b  s >  . . -  > b  K > b K +  2> 

�9 �9 �9 >~/2- = limK~oo b K. H e n c e  the sequence  bm3,bms,bm7 . . . .  con-  
verges to a,, + 1 f rom above.  The  m a p  f~ has a periodic orbit  with per iod K if 
and  only if a > bK. (1'25) 
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At a = b K, we define the intervals Jj ( j  = 1, 2 , . . . ,  K -  1) by 

[xj+4(a), X j + 2 ( a ) ]  for o d d  j < K -  2 

Jj =--j[xj+2(a), X/+g(a)] for even j < K -  3 (2.23) 

l[x3(a),x4(a)] for j =  K -  1 

Then it follows that 

fa  : J l - - )  J2---) J3  ---~ " " " "~  J K - 2 - - )  J2  U J4  U �9 �9 �9 t,J J K - I  , 

J K -  1 ---> J l  U JK- 1 (2.24) 

At a = bl,:, therefore, the solution to Eq. (2.1) is found to be 
K-1 

oo(x) = Z, ~(a)OAx) (2 .25)  
j = l  

where 

!a j + 1)/aJ-l(a + 1) 

dj(a)/dl(a) = a j+' + 1)/aJ- ' (a + 1) 

( j  = 1 ,3  . . . . .  K - 2)  

( j  = 2, 4 . . . . .  K - 3) 

( j = X -  1) 

(2 .26)  

d,(a) = 2(a + 1 ) / a ( a -  1)2[K(a 2 -  2) + 4] 

At a = bmx, we have % = bK, and (x,(a)} is a periodic orbit with 
period 2mK. The map fa has a periodic orbit with period 2"K if and only if 
a >1 bmK. At a = bmK, we must consider 2 m intervals Jj+ for each Jj defined 
by (2.23): 

Jj, ----- {x I ~Zm(X) ~ Jj(am) } (1 = 1 ' ' -  2 m) (2.27) 

From (2.18) and (2.25) we have 
M K - I  ZX(am) 

pa(x)=  • • M~(jz)di(a,~)Oi,(x)__ (2.28) 
1=1 2=1 

where Oj~ is the indicator function of Jjt, the coefficients 6(am) are given by 
(2.26), and at--  Uf__-, 1Jj,. 

1/g where M = 2  m, m--0 ,1 ,2 ,3 ,  . , and K = 3 ,  (III) a=CmK=-C K , . . 
4,5,6 . . . . .  Here % is the value of a at which {x,(a)} is a periodic orbit 
with period K in which x,(a) E (x2(a), 1/2) for 3 < n < K -  1, and XK(a ) 
= 1/2, i.e., a rising periodic orbit. Then we have 

x,(a) = a"- l (1  - a/2) (n >1 2) 
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Thus c x is the maximal root of the equation s K _ 2S K-I + 1 = 0, and 

s 1 6 2  < C K < C K + l < ' ' '  <2 = l i m c  K 
K-~ 

Hence the sequence %3, %4, %5 . . . .  converges to 8., from below. 
At a = %, let us define the intervals Jj by 

Then 

Jj = [Xj+l(a),xj+2(a)] ( j  = 1,2 . . . . .  K -  1) (2.29) 

K - I  

fa  JK-, U sj (2.30) 
j = l  

Equation (2.1) leads to pa(x) which takes the same form as (2.25) but with 
the different coefficients dj(a) being given by 

dj(a) /dl(a  ) = (a j -  1 ) / a J - ] ( a -  1) ( j  = 1,2 . . . .  , K -  1) 
(2.31) 

d,(a) = [ a -  K a ( 1 -  a / 2 ) ]  -1 

At a = CmK, we have a m = CK, and {xn(a)} is a periodic orbit with 
period 2inK. Corresponding to each Jj defined by (2.29), there exist 2 m 
intervals 

J j t ~ ( x l ~ t m ( x )  @ Jj(am) } ( l =  1 . . .  2 m) (2.32) 

The invariant density pa(x) has the same form as (2.28) but with the 
coefficients dj(am) being given by (2.31). 

. CORRELATION FUNCTIONS AND POWER SPECTRA 
AT THE BAND-SPLITTING POINTS 

The time-correlation function of orbits generated by the dynamical 
equation (1.2) is defined by 

C(n) =-- (f~n)(x)x) - ( x )  2 (n = 0, 1,2 . . . .  ) (3.1) 

where ( �9 �9 �9 ) is the average with pa(x): 

( F )  =--(dx F(x)&,(x)  (3.2) aj 

There may be a case in which C(n) contains periodic components which 
survive at n = m. Taking this fact into account, we define the power 
spectrum as 

P(w) = Re lim /~(&o + e) (3.3) 
~--> + 0 
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where 

i f ( z )  = k C(n)  e - ' z  (Rez > 0) (3.4) 
n=0 

The total integrated intensity of the power spectrum is given by 

fo2~d,o e(,o) = 2~C(0) (3.5) 

In this section, we use the formulas given in Appendix B and obtain 
the time-correlation function at the band-splitting point ~m" The invariant 
density is given by (2.22). We put N = M -- 2 m for N in Appendix B. Then 
d t in (B.1) is equal to [Mix(Jl)] -1. 

Since faJt = Jt+l (modM) and 1/2 ~ JM, we have 

~a-lO,+,(x)  (1 < l <  M -  1) 
gq~Ol( x ) (3.6) 

[2a-'o,(x)  (l = M) 

Thus the matrix Ho = ((/j) defined by (B.3) is given by 

Ia-l~i,j_l (1 ~ i ~< M -  l)  

~O = [2a-~61.j (i = M)  
(3.7) 

The eigenvalue equation for H o becomes 

det(H o - M)  = )t ar - 1 = 0 (3.8) 

the eigenvalues being h~ ~ -- exp[i2~r(j - 1) /M] ( j  = 1,2 . . . . .  M). 
The matrices U o = (u,j) and Uo -~ = (~/j) are 

uij = ul js j -  1 (3.9) 

Uij = UilSi - ( j -  1) (3.10) 

where sj = a)~ ~ . It follows from Uo 1Uo = 1 that 

~jlUlj = M -1 (1 < j < M)  (3.11) 

Especially, we get 

dt = utl = Ull a - ( t - 0  (3.12) 

~,, = [ Mg(J , ) ]  - '  = M - ' a o ( a ) a o ( a , ) . . .  ao( a m_ ,) 

as they should be because of (2.22) and (2.14). 
In order to obtain the matrices H~ and H m introduced in (B.9), we 

define the two sets of the numbers l (=  1,2 . . . . .  M - 1) of J) : L~ = { l [ J1 
c [0, 1/2]} and L 2 = {l[J! C (1/2, 1]). The members of L= are (i) the odd 
numbers or (ii) the even numbers given by l = 2 j (2k - 1), where j = 2,4, 
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6 . . . .  , m - 2  (for even m > 4 )  or m - 1  (for odd m > 3 ) ,  and k - - l , 2 ,  
3 . . . .  ,2m-J-1.  The members of Lj are the even numbers other than (ii). 
Then we have 

a-2xO;+ l(x) (l ~ LI) 

~ { x O , ( x ) } = - a - 2 x O , + l ( x ) + a - l O ; + 1 ( x )  ( I E L 2 )  (3.13) 

a-'O,(x) ( ;  = M )  

Hence H l = 07q) and Hlo = (~j) are given as follows: 

a -2a i ,  j _  1 (i ~ L 0 

~ij -- [~0- a - 26,a, - 1 (i ~ L2) (3.14) 

( / =  M )  

I 
O (i ~ L1) 

~ij = a-]di,j_] (i ~ L2) (3.15) 

[a- lal,j ( i =  M )  

The eigenvalue equation for H l becomes 

de t (H l - M )  = a M = 0 (3.16) 

the eigenvalue 2t = 0 being M-fold degenerate. Therefore we get for n > M 

H~ = 0 (3.17) 

Let ~ ' )  be the /j-element of the matrix HI', where n = 1,2,3, "~tJ 

. . . .  M - 1. Then we have from (3.14) 

{(o-l,~ ( l < i < M - n )  
= ' ; J - ~  ( 3 . 1 8 )  

( M - n +  1 < i<<. M )  

where 

o ( i , i + n - 1 ) = # { k [ i < < . k < i + n - l ,  k E L 2 )  (3.19) 

The coupling matrix V defined by (B.12) is found to be diagonal: 
V = diag(v 1 , v 2, . . . ,  Vg), V i being determined by 

Ia - lvi+ (i ~ L1) 1 

vi = ~ - a -Jv,,+ ] + 1 (i ~ L2) (3.20) 

[ 1 / 2  (i = M )  

Therefore (B.14) leads to 

j ( l )  = vtj(o) (3.21) 
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from which we see that v / is the center of the interval J1. It should be noted 
that vl+ l = fa(vl) for I = 1,2, . . . ,  M - 1, but fa(VM) = xl(a ) -7/= v 1. 

Using (3.9), (3.10), and (3.20), we have 

M 

( Uo'VUo)ij = ~, lU,j~ 1 vl(~(~176 l - '  (3.22) 

From (B.16), (3.22), and (3.11), the average ( x )  is obtained: 

M 

( x )  = M-1  E 19l (3.23) 
l = 1  

The correlation function consists of two parts: 

C(n) = Go(n ) + Gl(n) (3.24) 

where Go(n ) is given by (B.18), and Gl(n ) by (B.19). At a = am, the 
function Go(n ) is periodic with period M as seen from the eigenvalues ~j(0), 
We put 

~j(o) = exp(koj), wj = 27r(j - 1 ) / M  ( j  = 1,2 . . . . .  M )  (3.25) 

Then we obtain from (B.18), (3.22), and (3.11) 

M 

Go(n ) = ~ IA (wj)[2exp(inwj) (n = 0, 1, 2 . . . .  ) (3.26) 
j = 2  

where 
M 

A (~oj) -- M -  I ~,, vtexpl i( l - 1)wj] (3.27) 
/ = 1  

The function Gl(n) may be called the stochastic part, the randomness 
of which comes from the distribution of Jl in the interval J and the mixing 
property within each band. If we put 

j ,  ~ j<2) _ V j<,> = (xO<l)(x) dx (3.28) 
J J  

where 0 (1) is defined by (B.11), then the elements art' of the vector J '  satisfy 
the relation 

J[ = ,-3(M-OJ~t (1 < l < M )  (3.29) 

In deriving this relation, we have applied (A.3) and (B.14) to the fact that 

~a-3xOL',(x ) (t ~ L,) 

= (l  L2) 
(3.30) 
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which is obtained with the aid of (3.13) and (3.20). Since 

J~t = { [ I - / ~ ( J M  ) ] / 2 ,  [ 1 +/~(J~t ) ] / 2 }  

at a = a m ,  J~t is given by 

Jfvl = [ "(JM ) ]3/12 (3.31) 

Consequently we obtain 

( 1 6 M ) - ' [ / ~ ( J M ) ] 2 / ( I  - a -z) (n = 0) 

m - n  

G,(n) = ( 4 8 M ) - ' [ / ~ ( J M ) ] Z a "  Z ( - 1 )  "~lJ+"-l)a2', (3.32) 
l=1 

(n= 1 , 2 , . . . , M -  1) 
0 (n > M)  

where use has been made of (B.19), (3.12), (3.17), (Y18), (3.29), and (3.31). 
It should be noted that ]G1(n)] < GI(0) for n > O. If n = 0 in (3.24), it 
follows that 

C(0) = (x  2) - ( x )  2 = Go(0 ) + G,(0) (3.33) 

From (3.24), the power spectrum is written as 

P(w) = Po(co) + Pl(co) (3.34) 

For the periodic part we have from (3.26) 
M 

po(~0) = 1 Go(0 ) + ~r ~ ]A (~j)126(~ -- ~Oj) (3.35) 
j = 2  

for 0 < co < 2r and 
M 

s dco Po(co) 2" = 2~G0(0) = 2rr ~ ]A (oaj)] 2 (3.36) 
j = 2  

The stochastic part is a continuous spectrum given by 
M - 1  

Pl(co) = ~ Gx(n)c~ (3.37) 
n = 0  

the total intensity being 

s ) = 2rrGl(0) = 2~r(16M)-~[ t*(JM ) ]2 / (  1 -- a -2) (3.38) 

In particular, we have Go(n ) = 0 and Gl(n ) = (1/12)8,, o at a = d o = 2. 
At a = a I = q-}-, Eqs. (3.26) and (3.32) lead to the expression for C(n)/C(O) 
obtained in the previous paper. {0 Figure 2 shows the power spectra at the 
band-splitting points a,~ for m = 1,2, 3, 4, 5, 6. 
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Fig. 2. Power spectra of the tent map at the band-splitting points ~m. The relative intensity 
IA(o~#/Go(O) of the purely periodic modes [line spectrum, see (3.35)1 and the relative 
spectrum PI(W)/GI(O) of the stochastic part [continuous spectrum, see (3.37)] are shown as a 
function of to for m = 1, 2, 3, 4, 5, 6. 

4.  C O R R E L A T I O N  F U N C T I O N S  A T  a = hmK A N D  A T  a = c,. K 

At a = bmK (K  = 3, 5, 7, . . . ,  m = 0, 1,2, 3 . . . .  ), the invariant density 
is found to be (2.28). Since in the single-band regime (m = 0, a = bK) the 
flow of K -  1 intervals Jj generated by fa is given by (2.24), the flow of N 
[=  2'~(K - 1)] intervals J#, (2.27), generated by fa in the corresponding 
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2m-band regime (a = bmK ) becomes 

fa : J j ,  ---> J j , , +  1 

4 , - - ' 4 + , ,  
J j , - + 4 ,  u A ,  u . . .  u ],~_,,~ 

Jsl--> J,~ u JK-L1 

(l= 1 - . . m -  1 , j = I - . . K - 1 )  
( I =  M , j =  I . . . K -  3)  

(4.1) 
( l =  M , j  = K- 2) 
( I = M , j = K - 1 )  

where M = 2 m. Therefore we have for H o = (~t,j'r) and H ,  = ('rljl,j,l,) defined 
in Appendix B, 

Ia -a6 jd ,SU,_ l  ( I  = 1 " . .  M - -  1 , j - -  1 - - .  K -  1) 

| a - ' 6 j r  ,6 ,  r ( I =  M , j =  I . . . K -  3)  
I 

~jlj'l" ~-- ~ l - ' ( 4 . 2 )  |a- (62j, + <,s + " "  + 6K_,~,)6,,,, ( t =  M d =  K -  2) 

[a - ' (6 , j ,  + 6K_,,,)6,,,, d = g 4 =  K -  I) 

and 

[ ,,a-26jV6,j,_, (l = 1 - . .  M -  1,j  = 1 . . .  K -  1) 

=~(--1)m+la-26jf 1 6 1 l  ' ( I = M , j = I ' ' ' K - 3 )  
n/j,,, [(--1)ma-2(a2,j,-k-e4,j,q - . . .-{-6K_lf)6l, 1, ( I = M , j = K - 2 )  

[(--l)m+la-2(61,j,"l-6K_ld,)6l,l , ( I =  M , j =  K - 1 )  

(4.3) 

where 

1 (l ~ L,)  
E, = - 1 (l ~ L2) (4.4) 

The eigenvalues ?t)l ~ are determined from the equation 

de t (H  o - M )  = a - N ( s  K -- 2 S  K - 2  - 1 ) / ( S  + 1) = 0 (4.5) 

and the eigenvalues )dr~ from the equation 

de t (H,  - M )  = a - 2 N ( T  r -- 1 ) / ( T -  1) = O, N = M ( K  - 1) (4.6) 

Here S =  s v ,  s = a)t, and T =  t v ,  t = a2X, where M =  2 m. In deriving 
(4.6), the fact that  E I s  2 " " �9 E M _  , = ( - -  1 )  m has been used. 

Let sj = [sj[exp(ig~j) ( j  = 1 �9 �9 �9 K - 1) be the K - 1 roots of Eq. (4.5) in 
the single-band regime (M = 1). Then the N roots sjl ( j  = 1 �9 �9 �9 K -  1, 
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l = 1 �9 �9 �9 M )  of Eq. (4.5) can be writ ten as 

sj, = IS j l l /Mexp{  i[ 2 ~ ( l  -- 1) + r M ) (4.7) 

Note  that  Sll = aX~ ~ = a = bmK. The  N roots {/l of Eq. (4.6) are 

tj, = e x p { i 2 ~ ( / -  1 + j / K ) / M  ) (4.8) 

Since the eigenvalues for H 0 and  H 1 are different f rom each other, the 
formula  (B.23) can be used, and  the correlat ion funct ion at  a = bm/c takes 
the fo rm 

c(n) 
c(0) 

M n K - I  M n 

a j=2  a 

+ E ,~]IAI' ') tJz (4.9) 
j=l ~ 

The coefficients A~I ~ and  A)/) can be obta ined  s t raightforwardly through 
(B.25)-(B.29) in terms of sjl and tit, respectively. They  are, however,  
somewhat  lengthy, and  here we do not  present  them. In  the s ingle-band 
regime (m = 0, a = b/c), they are in agreement  with those ob ta ined  in the 
previous paper .  (1) 

In  the s ingle-band regime, Eq. (4.5) has two real roots s I = b/c >~f2 
and  s 2 = -b~ ; ,  where 1 < b )  < ~ - .  Other  K -  3 roots are complex  and 
satisfy the condit ion 3 - l / ( /c-2)  < [sj[ < 1 ( j  = 3 �9 �9 �9 K - 1). Therefore,  at 
a = bin~ c ,  we have  sll = a exp(iwt), where o: l = 2 ~ r ( / -  1 ) / M ,  and [sjl [ < a 
for sfl other  than  sl/. The  first term on the r ight-hand side of (4.9) represents 
2 m - 1 periodic modes,  and  bo th  the second and the third te rm decay as 
n ~ oo. In  the power  spec t rum they give 6-function peaks  at  ~0 = wt and  a 
cont inuous spectrum, respectively. 

The  correlat ion funct ion at a = c,~/c ( K  -- 3, 4, 5, 6 . . . .  , m = 0, 1,2, 
3 . . . . .  ) is obta ined  similarly. In  view of (2.30) the flow of N [ =  2m(K - 1)] 
intervals def ined by  (2.32) is found  to be  

To : 4 , - ~ , , + ,  
Jj,-~ Sj+,,, 

K-, 
Jj, --' U s,, 

i = 1  

d =  1 . . .  M -  1 , j =  1 - . . K -  1) 

( l  = M , j  = 1 - . . / ( -  2) 

(I=M,j=K-1) 

where M = 2 m. The  matr ices H o = (~jq'r) and  H 1 = (~jz.j'r) are 

Ia '~jfi,.,,_, (t = 1 . - .  M -  1,j = 1 . . .  K -  1) 

~jz,j'r = t a - ' S j f  -,61,, ' ( /= M , j  = 1 . . .  K -  2) 
[a - '8 , , , ,  ( l  = M , j  = K -  1) 

(4.10) 

(4.11) 
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and  

eft - 28jr 8U,_ 1 

t(-- 1)m+la-2~l, l, 

The  eigenvalue equat ions are 

and  

( I = I . . - M - I , j = I . - . K - 1 )  

( l =  M , j  = 1 . . .  K -  2) (4.12) 

( I = M , j = K -  1) 

d e t ( H  0 - M ) = ( - 1 ) N a - N ( S  x - 2 S  x - ' + l ) / ( S - 1 ) = O  (4.13) 

det(H 1 - XI)  = ( -  1 ) N a - 2 N ( T  ~: - -  1 ) / ( T -  1) = 0 (4.14) 

where, as in (4.5) and  (4.6), S = s M, s = aX, and  T = t M, t = a2)t. The  roots 
of  Eq. (4.13) are also writ ten as (4.7), in which s~ are the roots of  Eq. (4.13) 
in the s ingle-band regime. No te  that  Sll = a)t~l) = a = CmK. The  roots of 
Eq. (4.14) are given by  (4.8). 

The  correlat ion funct ion at  a = CmK also takes the fo rm (4.9). W e  omit  
here writing down the explicit expressions for  the coefficients ASI ~ and  A)  0 . 

In the two-band  regime (m = 1,a = C~K), they agree with those ob ta ined  in 

the previous paper .  (0 
Fo r  the roots of Eq. (4.13) in the s ingle-band regime (m = 0, a = %),  

we have  s! = % ~> (1 + ~ - ) / 2 ,  and  3 - 1 / ( x - 0  < Isj] < 1 f o r j  = 2 �9 �9 �9 K -  
1. At  a = CmK, therefore, we have  s~z = a exp(i~0l), where wl = 2 ~ r ( / -  1 ) / M ,  

and [sjl ] < 1 for sjt other  than  sll. Also in this case, the first term on the 
r ight-hand side of (4.9) represents periodic modes,  and  both  the second and 
the third term tend to zero as n ~ oe. 

5. CRITICAL BEHAVIORS NEAR THE BAND-SPLITTING POINTS 

Extending the previous t reatment ,  (0 we consider the critical behavior  
of the correlat ion funct ion when the pa rame te r  a approaches  the band-  
splitting point  a m (m = 1,2, 3 . . . .  ) according to the sequence b m_],K ( K  

= 3 ,5 ,7  . . . .  ) :  bm_l,K,~a m a s  K - ~  m.  
As K ~  m,  the two real roots of Eq. (4.5) in the s ingle-band regime 

behave  as 

and  

s I = b x = ~ - +  2 -(K+1)/2 + �9 �9 �9 (5.1) 

s2  = - b } ,  b~c = ~ -  - 2 - ( K +  1 ) / 2  + . . .  

For  the other K - 3 roots, we have ]sjl ~ 1 - 0 ( j  = 3 �9 �9 �9 K - 1). 

(5.2) 
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When a = b m_ 1,K and K tends to infinity, therefore, the damping 
becomes small for the 2 m-z modes with the eigenvalues s2t = (b'~) 2 /g  
exp[i2~r(2/-  1 ) /M]  (l = 1 , 2 , . . . ,  M / 2 ) ,  where M = 2 m. The damping of 
other modes, including the modes with the eigenvalues ~l, remains finite. 
Indeed, at a = bin_ 1,K for large K, we have 

(s2//a) n= exp ( - -nYK/2m- l ) exp[ i27r (21 -  1)n/2  m ] (l = 1 - - -  2 m-l)  

(5.3) 
where 7K is the damping constant in the single-band regime: (0 

VK -- ln(b,~/b~) = ( f ( b  K - ~ )  + . . . .  2-K/2 + . . .  (5.4) 

These 2"-1  modes are the critical modes which presage the splitting of the 
2 m- i bands into the 2 m bands. The damping constant of these modes is 

"~m-l,K = "YKI 2m-1 = (2/am)(bm-l ,K -- am) -t- . . .  (5.5) 

This is independent of their frequencies co = 2r r (21-  1)/2".  The power 
spectrum corresponding to these modes consists of 2 m-~ peaks at ,0 
= 2~r(2l - 1)/2 m, the line shape near the respective peaks being Lorentzian 
with the width Tin-1,K" 

For the 2 m- i _ 1 periodic modes, we have 

( s~ , /a ) '=  exp[ i2~r(l - 1)n /2  m- '  ] (l  = 2 . . .  2 m-|) (5.6) 

They show 2 m- 1 _ 1 &function peaks at ~o = 2~r(l - 1)/2 m- 1 in the power 
spectrum. 

As K--> m, the part of the correlation function (4.9), where m is 
replaced by m - 1, 

2 m - 1 2 m - 1 n 

Z A{ ~ + A(2~ --a- 
1 = 2  

tends to Go(n)/C(O ) at a = am given by (3.26) and (3.33), and the sum of 
the remaining terms tends to Gj(n)/C(O) at a = a,, given by (3.32) and 
(3.33). 

We next consider the case in which the band-splitting point a m is 
approached from below according to the sequence CmK ( K = 3, 4, 5, 6 . . . .  ) : 
CmK'~a,, as K---> oo. As mentioned in Section 4, the 2 m - 1 modes with the 
eigenvalues sit have no damping. We have 

(Sll/a) n= exp[ i2~r ( l -  1)n/2  m ] (l = 2,3 . . . . .  2 m) (5.8) 

which give 2 m -  1 &function peaks at oa = 2~r ( l -  1)/2 m in the power 
spectrum. As K +  m, the first term of the correlation function (4.9), 

2 m 

2 A{~ (5.9) 
1 = 2  



Analytic Study of Chaos of the Tent Map 297 

tends to Go(n)/C(O) at a = am, and the sum of all the terms except this 
one tends to Gl(n)/C(O) at a = a m. 

6. CRITICAL BEHAVIORS NEAR THE CHAOTIC 
TRANSITION POINT 

We now investigate the critical behavior  of the power spectrum as the 
transition point  a = 1 to the nonchaot ic  state is approached  f rom the 
chaotic  side. We put  a = a m and let m be large. Then  we have 

* /=  a - 1 = e + e2/2 + �9 �9 �9 , e = 2 - m l n 2  (6.1) 

At  a = a m, we have for vl of (3.23) and (3.27) 

x3(a ) < v2,_ , < xl(a ) and x2(a ) < %, < x4(a ) (6.2) 

for l = 1, 2, 3 . . . . .  M/2, where M = 2 m. Here x n (a) is defined by (2.4), and  
use has been made  of the fact that  v I is the center of the interval Jr. Since 
xl(a  ) -- x3(a ) = (72/2)(1 -b 7) and x4(a ) -- x2(a ) = (72/2)(1 + 27 + ~2), we 
get v2t_ 1 = (1 + 7 ) / 2  and v2l = 1 /2  if the terms of 0012) are neglected. 

In  order to obtain the higher-order terms, we may  use the fact  that  

x5(a) < /)41-3 < x , (a ) ,  

x3(a) < I)41_ 1 < xT(a), 

for l = I, 2, 3 . . . . .  M/4, and [xj(a) 
4, and that 

x9(a ) < Vs/_ 7 < x,(a), 
x3(a) < vs,_s < x,l(a), 
xs(a) < v~,_, < x,3(a), 

Xls(a) < v8,_, < x7(a), 

x2(a) </24/-2 < x6(a) 

xs(a)  < I)4l < x4(a) 
(6.3) 

--xj+4(a)[ = 7 3 +  0 ( 7  4) for j =  1,2,3, 

x2(a ) </)81_ 6 < X,o(a) 
Xl2(a) </281_ 4 < x4(a ) 

Xl4(a ) < v81_ 2 < x6(a ) 

Xs(a) < v8, < x,6(a) 

(6.4) 

for I =  1,2,3 . . . .  , M/8, and [xj(a)-xj+8(a)l = 4 7 4 +  0(75)  for j =  1, 
2 . . . . .  8, and so on. 

If we neglect the terms of O(~4), we have f rom (6.4) 

vst-7 = (1 + 7 ) / 2 ,  v8l_ 6 = (1 - 72 ) /2  

1281_ 5 = (1  q" ~ - -  g] 2 - -  7 3 ) / 2 ,  

Vsl_ 3 = (1 + 7 --  2 7 3 ) / 2 ,  

vst_ 4 = (1 + 273) /2  

v8l_ 2 = (1 - ~/2 + 273) /2  
(6.5) 

vs,_ , = (1 + 7 - ~/2 + ~73)/2, v8, = 1 /2  
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Hence we obtain from (3.23), (3.27), and (3.26) 

( x )  = (4 + 27 - 272 + 73)/8 

and 

A(~) 

A (Tr/2) 

A (~/4) 

A(3~r/4) 

= ( 7 / 4 ) ( 1  - 3 7 2 / 2 )  

= A * ( 3 ~ r / 2 )  = ( 7 2 / 8 ) ( 1  - i - 7)  

= A * ( 7 v / 4 ) =  - ( 7 3 / 8 ) ( ~ / - 2  - - 1 + i) 

= A * ( 5 ~ r / 4 )  = ( 7 3 / 8 ) ( ~  " + 1 + i) 

(6.6) 

(6.7) 

G0(0 ) = (7/4)2(1 - 272) (6.8) 

The coefficients A (r other than those given in (6.7) are of higher order. 
Generally, we have A (~r/2 k- Z)~Tk for k --- 1, 2, 3 . . . . .  

Let us write the value of a explicitly in G0(0) and A (~0j). We consider 
the average intensity at ~m of the periodic modes which become periodic at 
ak and remain periodic for a < ak: 

2,~ i 2 

Then we have, from (6.7), (6.8), (6.1), and (2.20), the scaling relations 

Go(O;6,,,)/Go(O;dm_,)=eO(1;~tm)/eo(l;~m__l)= 1/4 (6.10) 

q~(k;~tm)/~(k;~m__,) --- (1/4) k (k = 1,2,3) (6.11) 

q~(1; a, ,)/~(2; am) = 2 /7  z = [ a,(am)]2/2 
(6.12) 

~(2;  ~ ) / ~ ( 3 ; ~ )  = 1 / 2 7 2 = [  ~ , ( ~ ) ] 2 / 8  

for large m, where C~(~m) is the rescaling factor defined in (2.5). 
Equations (6.7) and (6.8) state that, as the transition point is ap- 

proached ( a ~  1), the total intensity (3.36) of the periodic spectrum be- 
comes small as (a - 1) 2, and only the motion of period 2 is dominant. The 
relative intensity [A (~r)lZ/G0(0) of the motion of period 2 evaluated from 
(3.27) and (3.26) is as follows: IA(~r)12/Go(O)= 1.0 for m = 1, 0.98383 
(0.96144) for m = 2, 0.99277 (0.99167) for m - - 3 ,  0.99814 (0.99803) for 
m = 4, 0.99953 (0.99952) for m = 5, 0.99988 (0.99988) for m -- 6. The values 
in parentheses are those obtained from the asymptotic expressions (6.7) and 
(6.8). 

We next consider the stochastic part. Let Wm be the root-mean-square 
bandwidth. At a = ~ ,  we have from (2.14) 

M ) 2 3 a 2 ]2 
W~--=--1M N [/~(J, ] = 4M a 2 ~  1 [/~(JM) (6.13) 

l ~ l  
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and therefore, from (3.32), 

G , ( 0 ;  am) = W~/12 (6.14) 

where the value of a is explicitly written in G,(0). Thus we have 

= (ln2) 2 G,(0;am) = W~ am_ ' + 1 1 - > - -  (6.15) 
GI(0; am-,)  Wm2_a 2am_, [ OLl(am) ] 2 2 2m+2 

as m--> m, where al(am) is the rescaling factor defined in (2.5). It may be 
noted that Gl (0 ;ao)=  1/12, where a 0 = 2 .  As a---> 1, the total intensity 
(3.38) of the stochastic part vanishes faster than any power of (a - 1). 

For the ratio between the two parts, numerical evaluation from (3.36) 
and (3.38) leads to the following results: GI(O)/Go(O ) = 3.43 • 10-1 for 
m = 1, 5.55 • 10 -3 for m---2, 4.01 • 10 -5 for m = 3, 7.45 • 10 -8 for 
m = 4, 3.49 • 10 -11 for m = 5, 4.09 • 10 -15 for m = 6. From (2.14) we 
have 

/*(JM ) = f i  (aj -- 1)/(~j + 1) < 2 -m(m+3)/2 (6.16) 
j= l  

at a -- a m. Using (6.16), (3.32), and (6.8), we have 

G l (0"~ am) / ao(O; am) < ( l n  2) - 3 2  - m(m + I ) -1  (6.17) 

for any m. 

7. SUMMARY AND CONCLUDING REMARKS 

For the chaotic region (1 < a < 2) of the tent map (1.1), the invariant 
density p,,(x), the time-correlation function of orbits C(n) and its power 
spectrum P(~) have been calculated exactly, and the band structure and 
the critical behaviors have been studied in detail. 

If a = 2, then p , ( x ) - - 1 ,  C(n)= (1/12)6n, 0 (8-correlated), and P(00 
= l / 12  (white). As a is decreased, a sequence of band-splitting transitions 
occurs at a = a m (m = 1, 2, 3 , . . .  ), and the accumulation point of a m is the 
transition point a = 1 to the nonchaotic region. 

When the 2 " - L b a n d  regime changes to the 2m-band regime, the 2 m- ' 
modes with the frequencies ~ = 2 ~ r ( 2 l - 1 ) / 2  m (l = 1 . . .  2 m-l)  undergo 
the critical slowing-down. Their damping constant is given by 3'm-, 
= (2/am)(a -- am) as shown in (5.5), the inverse of which is exactly equal to 
the average hopping time for the band-to-band hopping process slightly 
above a m.2 For a < a m these 2 m- ' modes become periodic modes without 

2 The idea of the average hopping time was introduced by Yorke and Yorke, (26) who 
discussed a decay of metastable chaos. Shenker and Kadanoff (27) applied this idea to 
band-splitting transitions. 
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damping. In the 2m-Lband regime (am < a ~< am_0, there are already 
2 m - l -  1 periodic modes with the frequencies co= 2 ~ r ( / - 1 ) / 2  m-I ( / =  
2-  �9 �9 2 m- 1), and these modes remain periodic for a ~< am. After all there 
are 2 m - 1 periodic modes in the 2m-band regime (am+l < a ~< am). In this 
sense the order in chaos increases stepwise as a band-splitting point is 
passed. However, it should be emphasized that the Lyapunov exponent 
(1.3) varies smoothly without any singularity. Both the Kolmogorov-Sinai  
entropy and the topological entropy are also given by In a for the present 
tent map. (25) Therefore these quantities also exhibit no singularity at the 
band-splitting points. 

In the single-band regime there is only one critical mode, the fre- 
quency of which is ~r and the damping is given by (5.4). Numerical 
calculations presented in the previous paper (I) have clarified that this mode 
contributes dominantly to the power spectrum in the single-band regime 
near a 1. Since Gl(O)/Go(O)<< 1 for large m as shown in (6.17), the 2 m-I 
critical modes and the 2 m- 1 _ 1 periodic modes stated above, namely, the 
terms given by (5.7), make also a dominant contribution to the power 
spectrum in the 2"-1-band regime. Furthermore, (6.7) and (6.8) show that 
the mode with the frequency ~r is most dominant for large m, that is, near 
the chaotic transition point a = 1. 

The total intensity of the periodic part of the power spectrum at the 
band-splitting point am behaves as G0(0; am) = (a - 1)2/16 near the chaotic 
transition point and satisfies the scaling relation (6.10) for large m. The 
same are true of the total intensity of the power spectrum C(0; am) = G0(0; 
am) + G1(0; am), because the intensity of the stochastic part Gl(0; ~,,) is 
much smaller than G0(0; am) as shown in (6.17). It should be noted that 
these power law and scaling relation are caused by the oscillatory motion of 
period 2, in spite of being in the chaotic region where the Lyapunov 
exponent is positive. 

We now make remarks on some scaling laws obtained for maps which 
have a quadratic maximum and therefore exhibit period-doubling bifurca- 
tions to chaos. Let z be the exponent specifying the nature of the maxi- 
mum: z = l  for the tent map, and z---2 for maps with a quadratic 
maximum. (27) Let us denote the control parameter of the maps by a, the 
band-splitting points by a m, and the chaotic transition point by a c. We 
consider the scaling laws which hold in the chaotic region near the chaotic 
threshold a C . 

Huberman and Rudnick (19) found that the Lyapunov exponent be- 
haves as ) t - - X 0 ( a -  a J ,  where "r is a universal exponent given by ~- 
= l n 2 / l n 8  with 8 = 4.669 �9 �9 �9 being Feigenbaum's convergence rate. (4) 
For the present tent map, (1.3) leads to )t = a - 1 near a c = 1. Since 8 = 2 
as shown in (2.21), the above power law holds for the tent map, in spite of 
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the fact that the tend map does not exhibit period-doubling bifurcations to 
chaos. A sequence of band-splitting transitions is essential for this power 
law. However, ~- takes a different value: 

l n 2 _ ( 1  for z = l  (7.1) 
~ ' -  In8 , 0 . 4 4 9 8 . . .  for z = 2  

Nauenberg and Rudnick (22) showed that the ratio eo(k)/@(k + 1) ap- 
proaches a universal constant 2fl (2) = 2 0 . 9 6 3 . . .  for large k, provided 
k << m, where @(k) is the average intensity of the 6-function peaks in the 
power spectrum. Their numerical results suggest that eo(k)/@(k + 1) = 2fl (2) 
holds also for small k in a good approximation if m is large enough. (22) In 
the approximation we have G0(0; am) / G0(0; a m_ l) = e0(1 ; am)/~(1 ; am- l) for 
the two maps they considered, provided that m is large enough, 3 where 
Go(O, am) and @(1; am) are the total intensity of the periodic part of the 
spectrum and the intensity of the motion of period 2, respectively. If we 
assume that Feigenbaum's argument ~5) may be applied also to the chaotic 
region, we get ~(1; am)//dp(1, a m _  1) ~ 1. Comparing this with (6.10), we have 

ao(O;am) _ O(1;am) { = 1 / 4  for z = l  

~---~G0(0;am-l) @(1;am-l) . = 1  for z = 2  
(7.2) 

The scaling relations (6.11) and (6.12) are also different from theirs. This is 
owing to the divergence of the rescaling factors (2.20) as m ---> m. 

This same reason applies to another scaling behavior. According to 
Huberman and Zisook, (21) there exists the scaling relation for the average 

bandwidth :  Wm= Wofl --m for large m, where fl = 3.2375 �9 �9 �9 is a univer- 
sal constant. They showed that G](0; am)/Gl(O; a m_ 1) = W 2 / W 2 - 1  = f 1 - 2  

for large m, where GI(0; am) is the total intensity of the stochastic part of 
the spectrum and corresponds to N(~m) in their notation. This relation 
should be compared with (6.15) for the tent map. We have for large m 

GI(O; ~m) __ Wm 2 {F Ogl(am) ] -2 for z = l  
G,(0; a,,_ ,) / 4 / ~  - ~L (7.3) 

m - - I  Lj ~-2 for z = 2 

Their scaling relation leads to the power law G1(0; a) = const • (a - ac) ~ 
near the chaotic threshold, with o a universal exponent given by o 
= 2 In B/In 8 = 1.5247 �9 �9 �9 . For the tent map G](0; a) vanishes faster than 
any power of (a - 1). 

Thus the difference of the "universal" constants is quite evident 
between the two types of maps; z = 1 and z = 2. It is expected to study 
further the dependence of the scaling laws on the exponent z. For this 

3 It should be noted that the present ~(k; ~), defined by (6.9), corresponds to their ,~(k - 1). 
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purpose, it may be necessary to consider the difference in structure of 
attractors near the chaotic transition point. 

The present method for the calculation of correlation functions can be 
easily applied to maps which are piecewise linear and continuous. It is 
interesting to extend the method so as to treat maps with z v a 1. The 
discussion on the band structure given in Section 2 is also expected to be 
extended. As an example, we may take the logistic model. This model is 
much complicated: as the height of the maximum is lowered, there appear 
infinitely many windows in each of which a unique cycle of period K(/> 3) 
or one of its subharmonics is attractive. (2) The tent map has no such 
windows. However, the present method and discussions may be extended at 
least to the band-splitting points at which there exists an absolutely- 
continuous invariant measure. 
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APPENDIX A. SOME PROPERTIES OF THE F R O B E N I U S - P E R R O N  
OPERATOR 

For a map f on the interval J, the Frobenius-Perron operator ~ is 
defined by 

~F(x) = fjdy F(y)8(f(y) - x) (A.1) 

where 8 is Dirac's 8 function. From (A.1), we have 

fJxF(f(")(x))G(x)=[dxF(x)~"G(x)jj ( n = 0 , 1 , 2 , . . . )  (A.2) 

Integration of (A.1) leads to 

;dx WF(x) = fjdx F(x) (A.3) 

Therefore, if ~x is an eigenfunction of ~ with an eigenvalue X, we have 

;dx cpx(x ) = 0 (1.4) 

for h :P 1. The eigenfunction with X = 1 is the density function of the 
ergodic invariant measure for f.  If f is ergodic, then [)q < 1. (23) 
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APPENDIX B. FORMULAS FOR THE TIME-CORRELATION 
FUNCTIONS 

We give formulas for the calculation of time-correlation functions in 
such cases as (I), (II), (III) stated in Section 2. These formulas, however, 
hold on the condition mentioned just below, and therefore can be applied 
to other maps which are piecewise-linear, continuous, or discontinuous. 

Let f be a map on the interval J into itself, and ~ be the Frobenius-  
Perron operator of f.  The condition for the formulas is as follows: There 
exist N subintervals Jl ,  J2 . . . .  , Ju  such that 

i. Jl's are disjoint with each other except at most one point, 
ii. the N-dimensional vector space spanned by Ol(x ) ,O2(x ) , . . . ,  

On(x ) is closed with respect to ~ ,  where 0l(x) is the indicator function of J,, 
iii. W has N different eigenvalues in this space. 
Then the invariant density O(x) in the interval J takes the form 

N 

o(x) = Y. a,O,(x) (B.1) 
/ = 1  

as in (2.22), (2.25), and (2.28). The time-correlation function is written as 
(B.17) with (B.18) and (B.19) below. We first derive these formulas. 

Let us define the column vectors 

[ 01(x) 
O(x)-~  02(x). and 

0n (x) 
Then, by the condition (ii), we have 

I  Ol(x) 
=l  O2(x) 

(B.2) 

~ O ( x )  = HoO(X ) (B.3) 

where H 0 = (~#) is an N • N matrix, the eigenvalues of which are denoted 
b,,j X(0)l , ~(o)2 , . . . - ,  ~(U ~ By the condition (iii), there exists an N • N matrix 
U 0 such that 

U o IH 0 U 0 = D O = diag(~ ~ , X2 (~ . . . . .  ~(U ~ (B.4) 

where D o is a diagonal matrix. The elements u/j and ~j of the matrices 
U o = (uo.) and U0 -1 = (~0) are expressed in terms of t 0. and ~)o) by use of 

1 I H o U o = UoD o and U o H 0 = D o U o , respectively. The invariant density 
p(x) is a unique eigenfunction of H with the eigenvalue equal to unity. If 
we put ~o) = 1, we have d z = ull (l = 1,2 . . . .  , N). 
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Using (B.1), we have for the average of x k 

(x k) =-fax xko(x) = [ U o , j(k)], ,  
d j  

where 

(k=0,1,2, . . . )  (B.5) 

j~k) 

d J  

j~> 

j~k) = ( d x  xkOt(x) = ~ dx x k (B.6) 
dJ  ")JI 

and [UolJ(k)]j means the j th  element of the vector U o lj(k). The eigen- 
functions with the eigenvalues Xj (~ are given by r = Uo-lO. Since X) ~ 
g= 1 for j ~ 1, we get from (A.4) 

;dx@~ = [  Uo'J(~ = 8,# (B.7> 

Using (A.2) and (B.1), we have for n = 0, 1,2, . . . 

<f,.>(x) . x> -- f/x = f i x  x[ xo( ) l, 

If we define the N • N matrices H i and H:o by 

;Yg'{xO(x)} = H,(xO(x)} + H,oO(X ) (B.9) 

then we have 

where 

(BAO) 

0(')(x) = xO(x)- VO(x) (B.I b 

V being the N • N matrix determined by 

VH o - H I V =  Hlo (B.12) 

It follows from (B.10), (B.11), and (B.3) that ;~f,n (xO(x)) = VH•O(x)+ 
H'~O(O(x). Thus we have from (B.8) 

(f('O(x). x ) = [  UO-1VHgJ (1) + Uo-'H?(J (2) - VJO))] t (B.13) 

Since the eigenvalues of H 1 are not equal to unity, we get from (A.4) 

; dxOO)(x) = j (0  _ vj(O) = 0 (B.14) 
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This leads to UoIJ ~0 = UolVUoUolJ (~ and therefore by use of (B.7) 

[ Uo Ij(1)] j= ( Uo-lVUO)jl (B.15) 

where (UolVUo)ij means the/j-element of the matrix Uo1VUo . Equation 
(B.15) and the fact that (f(")(x)) = ( x )  yield 

<x> = [ U o-~H~J(')], = [ Uo-'J(')] i = (U  o 'VUo)I, (B.16) 

From (B.13), (B.4), (B.15), and (B. 16), the time correlation function is 
written as 

C(n) - <f( '0(x) .  x> - <x> 2 = Go(n ) + G,(n) (B.17) 

where 

Co(,,) - [ uo-- ' v/- /gJ( ' ) ] ,  - <x>: 
N 

= X (v; 'VVo),/x?))"(v( 'VVo)j ,  (B.IS) 
j=2 

O,(n) ~ [  Uo- lHr(J  (2) VJ('))],  (B.19) 

We use (B.19) in Section 3, because the eigenvalues of the matrix H 1 
are degenerate for the tent map at the band-splitting point am" 

If the condition that 
iv. ~'~ has N different eigenvalues in the N-dimensional vector space 

spanned by 0~ ') (x), 02 (') (x) . . . . .  ON (') (x) 
is satisfied in addition to (i), (ii), and (iii), then the matrix H I is diagonaliz- 
able: 

U { ' H , U  l = D, = d i a g ( ~ ' ) , ~ ' ) , . . . ,  X(N l)) (B.20) 

and we have from (B. 19) 

N 
GI(/"/) ~- E (Ud-IUl)lj(~)l))n[ UI-I(J(2) -- VJ(1))] j  (B.21) 

j=l 
The matrices U l = (v/y) and U 1- l = (~/j) are expressed in terms of X)I) and 
HI = 0//j). From (B.12) we also have 

(U,- 'VUo)i j  = (U,-'H,oUo)o./()t) ~ - X(i ')) (B.22) 

For the tent map at a = bmK and a = c,, K, we have N = 2 m ( g -  I), 
and the N eigenvalues of H 1 are different from each other. Then (B.21) can 
be rewritten in a form which is more convenient for a systematic calcula- 
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tion. Thus the time-correlation function is given by 

C(R) N N 
_ ~ ,  A(O)(x(o)~" C(O) j~=2 J ' y  j + 2 A)')(>r (B.23) 

"= j = l  

C(0) = (x  2 ) -  (x> 2 = (x )[a(a  + 1) -1 - ( x ) ]  (B.24) 

A) O) = ( U 0 lVUo)lj( U 01VUo)jI/C(O ) (B.25) 

A) 1) =(VolUl)lj[  V l t ( J  (2) - Vj(I))]j/C(O) (B.26) 

1 N x(o) _ a ) k ( 1 )  

(Uo'VUo)o .= ~ E (Uo-'UO,, ~ - ___~t_ _, (B.27) 1=1 ~j (0)-  ~k(l) (UI  UO)/j 

[ va('))]+ 
N [ ~k(O) -- a)k} O) 1 

= l=lE (U,-'Uo) d[ a x(o) - a2X} ~ 2 x}o) _ aX/(,) ] ]( UolVUo)l 1 

(B.28) 

as shown in the following. 
These formulas indicate that only the matrices UolUt and U1-JUo are 

needed for the calculation of C(n), which are expressed in terms of the 
matrices H 0, H 1 and their eigenvalues ;tr ~ , ~ o. The summations in (B.27) 
and (B.28) over the eigenvalues can be easily done by use of the formula 

N 
2 I _ g'(x) (B.29) 
l= 1 x At g ( x )  

where g(x) is a polynomial of degree N and ~l are the N roots of the 
equation g(x) = O. 

Equations (B.25) and (B.26) follow directly from (B.18) and (B.21). We 
now derive (B.27). In view of (4.1) and (4.10), we may write as 

N 
faJ, = ~ oOJj (B.30) 

j = l  

where o 0 = 0 or 1. Then we have for H 0 = (~/j), H 1 = (%) and Hlo = (~/j) 

~ij = oijla (B.31) 

Voy/a2 if Ji C [0, 1/21 

"qij= if J , . C [ 1 / 2 , 1 ]  
(B.32) 
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and 

Hence 

~j = ( 0 if Ji C [0, 1/2 ] (B.33) 
oij/a if J i C [ l l 2 , 1 ]  

H~o = (H o - aH,)12 (B.34) 

Thus we get from (B.22) 
2t) ~ - a~} l) 

( al-lVao)ij = } ( Vl-lVo)ij ~j{.o) ~ ~ (B.35) 

Since UolVUo=(UolUO(U1-1VUo),  the expression (B.27) is obtained 
immediately. 

In order to derive (B.28), we first notice that 

J y ( x 2 0 ( x ) }  = a-2Ho(x20(x)}  - 2a- 'H,o(XO(X)} + H,oO(X ) (B.36) 

Therefore, for the N-dimensional vector space spanned by 

0(2)(X) ~-X20(X)- VIO(I)(x)- VoO(X ) (B.37) 
we have 

H O  (2)(x) = a - 2HoO (2)(x) (B.38) 

where V 1 and Vo are N • N matrices determined by 

a-eHoV1 - V1H 1 = 2a-lHlo (B.39) 

and 

a-2HoVo - VoH o = 2a-lHlo V - Hlo (B.40) 

respectively. The property (AA) leads to 

f jdx  O(2)(x) = j(2) _ Voj(O) _- 0 (B.41) 

From (B.40), (B.34), and (B.35) we have 
h}o) __ ah)O) 

(Uo'VoUo)ij= a ~ ~ a2A)o) (UolVUo)ij (B.42) 

Since U1-1(J (2) - VJ (1)) = (UI - IUo) (Uo1VoUo)UoIJ  (~ -- (UI-1VUo) 
Uo l j(1), we obtain (B.28), where use has been made of (B.7), (B.15), (B.35), 
and (B.42). 

We also have 

( x  2) = (Uo'VoUo),  = a(a + 1)-l(x) (B.43) 
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Here (B.5), (B.41), (B.7) have been used for the first equality, and (B.42), 
(B.16) for the second. This leads to (B.24). 
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